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Abstract. The local-density approximation to the expression for the generalized complex spin
susceptibility is used to treat simultaneously the effects of core polarization and of susceptibility
enhancement on the Knight shift and on the nuclear spin–lattice relaxation rate in metals. The
resulting equations can be considered as refinements of the Yafet–Jaccarino (YJ) theory for
transition metals, and retain the structure of a sum of terms related to partial densities of states
at the Fermi level. The original YJ theory correctly identified the importance of core polarization,
but was unable to provide good fits to experimental data in transition metals (specifically Pt and
Pd). To obtain satisfactory agreement, later workers found it necessary to introduce empirically
factors taking account of enhancement effects. This paper provides a theoretical basis for doing
so.

The effect of the Fermi contact interaction between nuclear and electronic spins on
the NMR parameters of the nuclei (Knight shift, relaxation rate and Ruderman–Kittel
coupling) in paramagnetic systems can be described in quite a general way (valid in metals,
semiconductors or molecules) through the complex generalized electron spin susceptibility
χ(r, r′; ω) = χ ′(r, r′; ω) − iχ ′′(r, r′; ω), that describes the local response of the spin
magnetization inr to a time-varying magnetic fieldH(r′) cos(ωt) applied inr′. In NMR
we are usually concerned with theω → 0 limit of χ(r, r′; ω), and theω-argument will not
be written in the following. The uniform susceptibility of the sampleχ̄ ′, the Knight shiftK
of a nucleus at siteR and its spin–lattice relaxation rateT −1

1 at temperatureT are given by

χ ′ = V −1
∫ ∫

χ ′(r, r′) dr dr′ (1)

K = (2/3)

∫
χ ′(R, r′) dr′ (2)

S(T1T )−1 = 2µ0(2µB/3)2χ ′′(R, R)(πh̄ω)−1 (3)

whereS is the Korringa constant (γe/γn)
2(h̄/4πkB) andµB the Bohr magneton. To obtain

CGS expressions, replace the factors 2/3 in the right-hand sides of (2) and (3) by 8π/3.
In the following we will be concerned with metals [1, 2], where the effects are at most

only slightly temperature dependent, andχ will be evaluated at zero temperature. In a
spirit similar to that of the paper by Yafet and Jaccarino [3], the aim is not to obtain
absolute values for the Knight shift and the relaxation rate, but only to show how the
Korringa relation between(T1T )−1 and K2 is modified by band structure and exchange
enhancement. We assume that as results of a band structure calculation, the one-electron
energiesεi and wavefunctionsψi (r) are known. The Fermi energy is taken as zero, and
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the position vectors are written asr = ρ + Rα with ρ restricted to the Wigner–Seitz (WS)
cell at the origin, andRα (α = 1, . . . , N) a lattice vector. Theψi (r) are supposed to be
given by muffin-tin orbitals8i(ρ); the WS cell is approximated by a sphere and the8i are
developed in spherical harmonicsYlm:

ψi (r) = N−1/28i(ρ) exp(iki · Rα) (4a)

8i(ρ) = (4π)1/2
∑
lm

Clm(i)φl(εi, ρ)Ylm(θ, φ) (4b)

where the functionφl is real, and depends on the indexi only through the energyεi .
The ψi (r) are normalized in the volumeV of the sample; the8i(ρ) in the WS cell of
volume � = V/N . The lm-like partial densities of electron states (twice the number of
electron energy levels per atom and per unit energy interval) at energyε, Dlm(ε), obey
Obata’s sum rule [4]:

2N−1
∑

i

δ(ε − εi)C
∗
lm(i)Cl′m′(i) = Dlm(ε)δll′δmm′ . (5)

In the following, the energy argument inD(ε) and inφl(ε, ρ) will be omitted whenε = 0
(the Fermi energy).

The expressions for the unenhanced (or Pauli) value of the susceptibilities (indexP )
are

(2µ0µ
2
B)−1χ ′

p(ρ, ρ′ + Rα) = N−2
∑

i

δ(εi)|8i(ρ)|2|8i(ρ
′)|2

+N−2
∑
ij

I (εi, εj )8i(ρ)8∗
i (ρ

′)8∗
j (ρ)8j (ρ

′) exp[i(kj − ki) · Rα] (6a)

(2µ0µ
2
Bπh̄ω)−1χ ′′

p (ρ, ρ′ + Rα) = N−2
∑
ij

δ(εi)δ(εj )8i(ρ)8∗
i (ρ

′)8∗
j (ρ)8j (ρ

′)

× exp[i(kj − ki ) · Rα] (6b)

whereI (εi, εj ) = 0 if εi = εj , and(θ(εi) − θ(εj ))/(εi − εj ) otherwise.
Due to electron–electron interactions, the actual valueχ(r, r′) of the susceptibility is

different from the unenhanced valueχp(r, r′). In the local-density approximation of the
density-functional theory of the inhomogeneous electron gas, the paramagnetic susceptibility
is given by the solution of the integral equation [5–8]

χ(r, r′) = χp(r, r′) +
∫

χp(r, r1)ν(n(r1))χ(r1, r
′; ) dr1 (7)

whereν is a function only of the charge densityn(r1) at positionr1, and will be written as
ν(r1) in the following. The theory is in principle restricted to ground-state properties, but
it is believed that its results for low-lying excitations are reasonably correct [8]: to lowest
order inh̄ω, (7) will be used for the complex susceptibilityχ = χ ′ − iχ ′′. The real partχ ′

is

χ ′(ρ, ρ′ + Rα) = χ ′
p(ρ, ρ′ + Rα)

+
∑

β

∫
χ ′

p(ρ, ρ1 + Rβ)ν(ρ1)χ
′(ρ1, ρ

′ + Rα − Rβ) dρ1. (8a)

Onceχ ′ has been found,χ ′′ can be calculated from

χ ′′(ρ, ρ′ + Rα) = χ ′′
p (ρ, ρ′ + Rα)

+2
∑

β

∫
χ ′′

p (ρ, ρ1 + Rβ)ν(ρ1)χ
′(ρ1, ρ

′ + Rα − Rβ) dρ1
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+
∑

β

∑
γ

∫ ∫
χ ′(ρ, ρ1 + Rβ)ν(ρ1)χ

′′
p (ρ1, ρ2 + Rγ − Rβ)

×ν(ρ2)χ
′(ρ2, ρ

′ + Rα − Rγ ) dρ1 dρ2. (8b)

We assume that the magnetizationm(ρ) induced by a uniform magnetic field has spherical
symmetry: m(ρ) = m(ρ). Likewise we take the charge densityn(ρ) as spherical, so that
ν(ρ) = ν(ρ). To describe the relation betweenχ , K and T1T it is useful to introduce a
quantityml(q; ρ) defined as

ml(q; ρ) = φ2
l (ρ) +

∑
α

exp(−iq · Rα)

∫
φ2

l (ρ1)ν(ρ1)χ
′(ρ1, ρ + Rα) dρ1. (9)

It is probably a sufficient approximation to replaceχ ′ in (9) by χ ′
p, given by (6a).

The uniform susceptibility is calculated from (1) and (8a). Integration over the second
argument on both sides of (8a), using the fact thatχ ′(r1, r2) = χ ′(r2, r1), gives∫

χ ′(ρ, r1) dr1 ≈ µ0µ
2
B

∑
lm

Dlmml(0; ρ). (10)

Now integrateml(0; ρ) according to (9) overρ, replacingχ ′ in the right-hand side by (10).
On both sides of the resulting equation, we suppose thatml(0; ρ) in the integrals can be
written as

ml(0; ρ) = (1 + Al)φ
2
l (ρ). (11a)

Performing the integration theAl are found to be given by the system of equations

Al =
∑
l′m′

Dl′m′(1 + Al′)νll′ (11b)

where

νll′ = µ0µ
2
B

∫
φ2

l (ρ)ν(ρ)φ2
l′(ρ) dρ. (11c)

Supposing that the diagonal elements ofνll′ are much larger than the nondiagonal ones and
using (1), (10) and (11a) finally leads to

χ̄ ′ =
∑
lm

χ̄ ′
lm = µ0µ

2
B�−1

∑
lm

Dlm

[
1 − νll

∑
m′

Dlm′

]−1

. (12)

This is the dimensionless ‘volume’ susceptibility; to obtain the more frequently used
CGS ‘molar’ susceptibility replaceµ0 by NA�.

The Knight shift becomes

K =
∑
lm

Klm =
∑
lm

χ̄ ′
lm(�Hhf,l/µB) (13)

where the ‘l’-like effective hyperfine fieldHhf,l is defined as

�Hhf,l/µB = 2ml(0; 0)

[
3�−1

∫
ml(0; ρ) dρ

]−1

(14)

(in CGS, replace the factor 2/3 in (14) by 8π/3).
For the calculation ofT1T it is necessary to make an imporant approximation to (8b),

similar to (but more general than) an approximation in the treatment by Yafet and Jaccarino
[3] (see below). In the enhancement integrals on the right-hand side of (8b) only those
contributions will be considered where both arguments ofχ ′′

p (ρ, ρ′ + R) are in the same
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WS cell. Furthermore,χ ′′
p (ρ1, ρ2) is replaced by its spherical average, that depends only

on |ρ1| = ρ1 and |ρ2| = ρ2. Then we obtain from (8b) and (5)

2(πh̄ωµ0µ
2
B)−1χ ′′(0, 0) =

∑
lm

D2
lm

[
φ2

l (0)φ2
l (0) + 2φ2

l (0)

∫
φ2

l (|ρ1|)ν(|ρ1|)χ ′(ρ1, 0) dρ1

+
∑

α

[ ∫
χ ′(0, ρ1 + Rα)ν(|ρ1|)φ2

l (|ρ1|) dρ1

]2]
. (15)

Using (15), (3) and (13) the relaxation rate can be written as

S(T1T )−1 =
∑
lm

klK
2
lm (16)

with the disenhancement factorskl defined by

k−1
l = |ml(0; 0)|2

/[
N−1

∑
q

|ml(q; 0)|2
]
. (17)

The present results reduce to those in the Yafet and Jaccarino paper [3] by setting
νll = 0, kl = 1. This is due a difference in approximations. They start by replacingχ ′

in the right-hand sides of (8a) and (8b) with χ ′
p (6a). Next, they neglect ‘the exchange

integrals between two conduction band orbitals’, which is equivalent to retaining only the
I (εi, εj ) sum on the right-hand side of (6a). As a consequence,νll = 0. Finally, ‘only those
configurations for which a core electron remains on the same atom are included’, which
is equivalent to considering only those contributions to the enhancement integrals where
Rα = 0 in (6a). This results inkl = 1 and suppresses theq-dependence ofml(q; ρ) in (9).

Theq-dependence of the susceptibility has been discussed for the homogeneous electron
gas [9–12]. In that case, bothm andν are position independent, and the hyperfine field is
simply Hhf = 2µB/3�. The resulting expressions for (13) and (17) were given by Moriya
[9]. It has been shown [10, 12] that experimental data for simple metals do not agree very
well with the equations so obtained, but can be described satisfactorily using a theory of
nonlocal interactions in the homogeneous electron gas. For that case, the relation between
k andν is found to be roughly of the form

k ≈ 1 − νD. (18)

It would be interesting to see to what extent a similar relation between thekl andνll exists.
A rigorous discussion of experimental data in the framework of the present formulation

requires careful consideration of the contributions from orbital hyperfine interactions (that
cause the chemical shift in molecules)Korb and (T1T )orb, and of the choice of the zero of
the shift scale. This will be left for later work, and here we will just give an illustration
of the problems involved, using the parameters for Pt and Pd obtained by different authors
[3, 13–17]. These are collected in table 1, where values marked with an asterisk are not from
the original papers, but have been calculated for the present discussion. The experimental
values ofK and of(T1T )−1 should be equal to the sums of the three contributions mentioned
in the table; the experimentalχ has an additional diamagnetic contribution (estimated at
roughly−20× 10−6 emu mol−1). All authors use equations of the form (12), (13) and (16)
for a two-band case, consideringl = 0 and l = 2, but they differ in the estimates ofν00

andν22. To obtaink0 andk2, expressions analogous to (18) are used [12].
In the case of Pt (the first four columns of table 1), it is seen that setting the exchange

integrals to zero can give either reasonably correct values for susceptibility and Knight
shift (first column) or for relaxation rate and density of states (second column), but not for
all quantities simultaneously. Introduction of a nonzeroν22 improves the fit considerably
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Table 1. Overview of NMR parameters used in the literature for Pt metal (columns 1–4) and Pd
metal (columns 5 and 6). The reference numbers are given in the bottom row. The asterisked
values are not from the original papers, but have been calculated for the discussion in the text.

ν00 (mRyd) 0 0 0 98 0 120
ν22 (mRyd) 0 0 29 37.7 0 29.4
χ0 (µemu mol−1) 4.8 4.66∗ 10 14.8 6.2 13.5
χ2 (µemu mol−1) 220 83.4∗ 215 206.5 710 746.5
χorb (µemu mol−1) 13.2 — 18 9.9 30 20
K0 (%) 1.02 0.99∗ 0.788 0.72 0.36 0.59
K2 (%) −4.65 −1.76∗ −4.61 −4.38 −4.38 −4.55
Korb (%) 0.26 — 0.38 0.21 0.36 0.36
(T1T )−1

0 (s−1 K−1) 18.6∗ 17.5 11.1∗ 6.35 0.105∗ 0.19
(T1T )−1

2 (s−1 K−1) 77.4∗ 11.1 23.6∗ 19.7 3.11∗ 0.53
(T1T )−1

orb (s−1 K−1) 134∗ 19.3 9.8∗ 7.25 1400∗ 0.41
D0 (Ryd−1) 2.02∗ 1.96 4.2 4.08 2.61∗ 3.34
D2 (Ryd−1) 92.6∗ 35.1 25.0∗ 20.4 299∗ 30.6
Reference [14] [3] [13] [15] [16] [17]

(column 3), and using bothν22 andν00 an exact fit can be obtained (column 4). Pd NMR
has been found in only one nonmetallic system [18]. The zero of the shift scale has been
determined from measurements in the metal, assuming that the experimental susceptibility
is essentially equal toχ2, the other contributions cancelling each other. The value ofK

reported in column 5 of table 1 is not corrected for the diamagnetic shift due to the core
electrons, and corresponds toγ 105 = 0.1942 kHz G−1. On this scale, the chemical shifts of
the two samples of PdCl2−

6 in [18] areδ = +5480 ppm andδ = +5398 ppm. As in the case
of Pt, the assumption of zero exchange integrals (column 5 of table 1) leads to unrealistic
values for density of states and relaxation rate (the experimental value isT1T = 1.35 s−1 K−1

[19]), but a good fit is obtained by allowing nonzero values (column 6).
The quality of the fits (that are close to experimental accuracy) in columns 4 and 6

of table 1 is not so much due to the use of better theoretical values forD0 and D2 as to
the introduction of the factork2. Its justification has remained largely empirical however;
no earlier theoretical treatment describing simultaneously the effect of core polarization
(expressed byHhf,2 in (14)) and exchange enhancement (described byν22 and k2 in (11)
and (17)) seems to be available.
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